COMBINATORICA

Akadémiai Kiadó - Springer-Verlag

PACKING DIRECTED CIRCUITS FRACTIONALLY

P. D. SEYMOUR

Received February 5, 1993 Revised September 20, 1993

Let G be a digraph, and let $k \ge 1$, such that no "fractional" packing of directed circuits of G has value > k, when every vertex is given "capacity" 1. We prove there is a set of $O(k \log k \log \log k)$ vertices meeting all directed circuits of G.

1. Introduction

A well-known conjecture of Younger [5] asserts the following.

- (1.1). (Conjecture) For every integer $k \ge 0$ there exists $n \ge 0$ such that for every digraph G, either
- (i) there are k directed circuits of G, mutually vertex-disjoint, or
- (ii) there exists $X \subseteq V(G)$ with $|X| \le n$ such that $X \cap V(C) \ne \emptyset$ for every directed circuit C of G.

(Digraphs in this paper are finite; V(G) denotes the set of vertices of G.) This is trivial for $k \le 1$, and has recently been proved for k = 2 by McCuaig [4], when we may take n = 3. For $k \ge 3$, however, (1.1) remains open.

Our objective in this paper is to prove a fractional version of (1.1). A fractional circuit packing in a digraph G is a function q assigning a non-negative rational q(C) to every directed circuit C of G, such that for every vertex v of G,

$$\Sigma(q(C): v \in V(C)) \le 1.$$

We define the value of q to be $\Sigma q(C)$, summed over all directed circuits C. Clearly, there is a (0, 1)-valued fractional circuit packing of value k if and only if (1.1)(i) holds. Our main result is the following.

(1.2). Let G be a digraph, and let $k \ge 1$ be a real number such that every fractional circuit packing in G has value $\le k$. Then there exists $X \subseteq V(G)$ with

$$|X| \le 4k \log(4k) \log \log_2(4k)$$

Mathematics Subject Classification (1991): 05 C 20, 05 C 38, 05 C 70

such that $X \cap V(C) \neq \emptyset$ for every directed circuit C of G.

 $[\log(n)]$ denotes the logarithm of n to base e, and $\log_2(n)$ to base 2.

By linear programming duality, (1.2) is equivalent to the following. (\mathbf{R}_{+} is the set of non-negative real numbers.)

(1.3). Let G be a digraph, and let $w:V(G)\to \mathbb{R}_+$ be a function such that

$$\Sigma(w(v):v\in V(C))\geq 1$$

for every directed circuit C of G. Let $k \ge 1$ be real, and let

$$\Sigma(w(v):v\in V(G))\leq k.$$

Then there exists $X \subseteq V(G)$ with

$$|X| \le 4k \log(4k) \log \log_2(4k)$$

such that $X \cap V(C) \neq \emptyset$ for every directed circuit C of G.

To prove (1.3), we may assume by a continuity argument that w(v) > 0 for every vertex v, and that each w(v) is rational. Let n > 0 be an integer such that w'(v) = nw(v) is an integer for every vertex v. Construct a new digraph H as follows. For each $v \in V(G)$, let $(v,1), \ldots, (v,w'(v))$ be new vertices in H, where (v,i) is adjacent to (v,i+1) for $1 \le i < w'(v)$. For each edge of G with tail u and head v, let there be an edge of H with tail (u,w'(u)) and head (v,1). Then H has the properties that:

- (i) $|V(H)| = \sum_{v \in V(G)} w'(v) = \sum_{v \in V(G)} nw(v) \le nk$,
- (ii) for every directed circuit C' of H there is a directed circuit C of G so that

$$|V(C')| = \sum_{v \in V(C)} nw(v) \ge n \ge k^{-1}|V(H)|.$$

Consequently, from (1.4) stated below and proved in the next section, there exists $X \subseteq V(H)$ with

$$|X| \leq 4k \log(4k) \log \log_2(4k)$$
,

meeting every directed circuit of H, and so the same holds for G; that is, (1.3) is true. This shows that in order to prove (1.3) it suffices to prove the following.

(1.4). Let G be a digraph, and let $k \ge 1$ be real, such that every directed circuit of G has length $> k^{-1}|V(G)|$. Then there exists $X \subseteq V(G)$ with

$$|X| \leq 4k \log(4k) \log \log_2(4k)$$

such that $X \cap V(C) \neq \emptyset$ for every directed circuit C of G.

We shall prove (1.4) in the next section.

2. The main proof

The idea of the proof of (1.4) is quite simple. We proceed by induction on |V(G)|. Since every directed circuit of G has length $\geq |V(G)|/k$, there are vertices u,v such that every directed u-v path has length (almost) |V(G)|/k, and hence there are disjoint non-null sets X_1,\ldots,X_n with union V(G), such that no edge of G has tail in X_i and head in X_j for $j\geq i+2$, where n is roughly |V(G)|/k. Since X_1,\ldots,X_n have cardinality $\leq k$ on average, one of them has cardinality $\leq k$, and we can choose one $(X_i$ say) roughly in the middle of the sequence with $|X_i|$ not much bigger than k. We delete X_i and apply the inductive hypothesis to the restrictions of G to $X_1\cup\ldots\cup X_{i-1}$ and to $X_{i+1}\cup\ldots\cup X_n$. Both the latter have at most about $(1-\frac{1}{2k})|V(G)|$ vertices, and the result follows after some calculations. This easily yields (1.4) with the bound on |X| replaced by a quadratic function of k. However, it seems of interest to prove the sharpest version of (1.4) that we can, and so we shall use a numerically more careful argument.

Let us say μ is *suitable* if μ is a real-valued function with domain the set of positive real numbers, such that

- (i) μ is non-negative,
- (ii) $\mu(x) \ge x$ for all $x \ge 1$,
- (iii) $\mu(x+y) \ge \mu(x) + \mu(y)$ for all x,y > 0 (and consequently μ is monotone non-decreasing),
- (iv) if $y \ge x \ge \frac{1}{4}$ and $x + y \ge 1$ then

$$\mu(x+y) - \mu(x) - \mu(y) \ge 4x \log\left(1 + \frac{y}{x}\right) \log\log_2 4(x+y).$$

The reason for interest in suitable μ is that we shall prove the following.

- (2.1). Let μ be suitable. Let G be a digraph, and let k>0 be a real number such that every directed circuit has length $\geq k^{-1}|V(G)|$. Then there exists $X \subseteq V(G)$ with $|X| \leq \mu(k)$ such that $X \cap V(C) \neq \emptyset$ for every directed circuit C of G.
 - (1.4) follows from (2.1) because of the following.
- (2.2). Let $\mu(x) = 0$ for 0 < x < 1, and $\mu(x) = 4x \log(4x) \log \log_2(4x)$ for $x \ge 1$. Then μ is suitable.

Proof. The first three conditions are easily verified. For the last, let $y \ge x \ge \frac{1}{4}$, with $x + y \ge 1$. Since

$$\mu(x+y) - \mu(x) - \mu(y) = x \left[\frac{\mu(x+y)}{x+y} - \frac{\mu(x)}{x} \right] + y \left[\frac{\mu(x+y)}{x+y} - \frac{\mu(y)}{y} \right]$$

and $\frac{\mu(x+y)}{x+y} - \frac{\mu(y)}{y} \ge 0$, it suffices to show that

$$\frac{\mu(x+y)}{x+y} - \frac{\mu(x)}{x} \ge 4\log\left(1 + \frac{y}{x}\right)\log\log_2(4(x+y)).$$

There are two cases. If x < 1 then since $x + y \ge 1$,

$$\begin{split} \frac{\mu(x+y)}{x+y} - \frac{\mu(x)}{x} &= \frac{\mu(x+y)}{x+y} = 4\log(4(x+y))\log\log_2(4(x+y)) \\ &= 4\left[\log\left(1 + \frac{y}{x}\right) + \log(4x)\right]\log\log_2\left(4(x+y)\right) \\ &\geq 4\log\left(1 + \frac{y}{x}\right)\log\log_2(4(x+y)) \end{split}$$

since $4x \ge 1$, as required. If $x \ge 1$ then

$$\begin{split} \frac{\mu(x+y)}{x+y} - \frac{\mu(x)}{x} &= 4\log(4(x+y))\log\log_2(4(x+y)) - 4\log(4x)\log\log_2(4x) \\ &\geq 4[\log(4(x+y)) - \log(4x)]\log\log_2(4(x+y)) \\ &= 4\log\left(1 + \frac{y}{x}\right)\log\log_2(4(x+y)) \end{split}$$

as required.

Thus, it remains to prove (2.1). We need the following lemma.

(2.3). Let μ be suitable, let k>0 be real, for $0\leq x\leq 1$ let y be a real-valued continuous function of x, and let $I\subseteq [0,1]$ be finite, such that $y(0)\geq 0, y(1)\leq 1$, and for all $h\in [0,1]-I,y$ is differentiable and $\frac{dy}{dx}\geq \frac{1}{k}$ when x=h. Then there exists h with $\frac{1}{4}< h<\frac{3}{4}$ such that $h\not\in I$ and when x=h,

$$k\frac{dy}{dx} \le \mu(k) - \mu(ky) - \mu(k(1-y)).$$

Proof. By replacing x, y by 1-x, 1-y if necessary, we may assume that $y\left(\frac{1}{2}\right) \le \frac{1}{2}$. Since y is monotone increasing, it follows that $0 < y\left(\frac{1}{4}\right) < y\left(\frac{1}{2}\right) \le \frac{1}{2}$. Also, since $\frac{dy}{dx} \ge \frac{1}{k}$ for $0 \le x \le 1$ except at finitely many values of x, it follows that $y\left(\frac{1}{4}\right) \ge (4k)^{-1}$. For the same reason and since $y(1)-y(0) \le 1$, it follows that $k \ge 1$.

 $(4k)^{-1}$. For the same reason and since $y(1) - y(0) \le 1$, it follows that $k \ge 1$. For 0 < x < 1, define $z = z(x) = -(\log(y))^{-1}$. Since $y\left(\frac{1}{4}\right) \ge (4k)^{-1}$, it follows that

$$z\left(\frac{1}{4}\right) \ge -(\log((4k)^{-1}))^{-1} = (\log(4k))^{-1}.$$

Since $y(\frac{1}{2}) \leq \frac{1}{2}$, it follows that

$$z\left(\frac{1}{2}\right) \le -\left(\log\left(\frac{1}{2}\right)\right)^{-1} = (\log 2)^{-1}.$$

Thus, $z\left(\frac{1}{2}\right)/z\left(\frac{1}{4}\right) \le \log_2(4k)$, and so

$$\log\left(z\left(\frac{1}{2}\right)\right) - \log\left(z\left(\frac{1}{4}\right)\right) \le \log(\log_2(4k)).$$

Therefore, there exists h with $\frac{1}{4} < h < \frac{1}{2}$ and with $h \notin I$, such that when x = h,

$$\frac{d}{dx}(\log z) \le 4\log\log_2(4k),$$

that is,

$$\frac{dz}{dx} \le 4z \log \log_2(4k).$$

But $y = exp(-z^{-1})$, and so $\frac{dy}{dz} = yz^{-2}$. Hence, when x = h,

$$\frac{dy}{dx} = \frac{dy}{dz} \frac{dz}{dx} \le (yz^{-2})(4z \log \log_2(4k)) = 4y(-\log y) \log \log_2(4k).$$

Now when x=h, since

$$(4k)^{-1} \le y\left(\frac{1}{4}\right) < y < y\left(\frac{1}{2}\right) \le \frac{1}{2},$$

it follows that $k(1-y) \ge ky \ge \frac{1}{4}$; and $ky + k(1-y) = k \ge 1$ as we already saw. From condition (iv) in the definition of "suitable",

$$\mu(ky + k(1 - y)) - \mu(ky) - \mu(k(1 - y)) \ge 4ky \log\left(1 + \frac{k(1 - y)}{ky}\right) \log\log_2(4(ky + k(1 - y))),$$

that is,

$$\mu(k) - \mu(ky) - \mu(k(1-y)) \ge 4ky(-\log y)\log\log_2(4k).$$

It follows that

$$k\frac{dy}{dx} \le \mu(k) - \mu(ky) - \mu(k(1-y))$$

as required.

If G is a digraph and $A, B \subseteq V(G)$, we denote by D(A, B) or $D_G(A, B)$ the set of edges of G with tail in A and head in B.

(2.4). Let μ be suitable. Let G be a digraph with $|V(G)| \geq 2$, and let $n \geq 2$ be an integer such that every directed circuit of G has length $\geq n$. Then there is a partition (A,B,C) of V(G) with $A,B \neq V(G)$ and $D(A,B) = \emptyset$ (A or B may be null), such that

$$|C| \leq \mu\left(\frac{|V(G)|}{n}\right) - \mu\left(\frac{|A|}{n}\right) - \mu\left(\frac{|B|}{n}\right).$$

Proof. If G is not strongly connected, there is a partition A, B of V(G) with $A, B \neq \emptyset$ and with $D(A, B) = \emptyset$; and then $C = \emptyset$ satisfies the assertion of the theorem (by condition (iii) in the definition of "suitable"). We assume, therefore, that G is strongly connected.

(1). There is a partition $X_1, ..., X_n$ of V(G) into non-empty sets such that for $1 \le i, j \le n$, if j > i+1 then $D(X_i, X_j) = \emptyset$.

For let $v_0 \in V(G)$. For $1 \le i \le n-1$ let X_i be the set of all $v \in V(G)$ such that there is a directed path from v_0 to v and the shortest such path has exactly i edges; and let $X_n = V(G) - (X_1 \cup ... \cup X_{n-1})$. Then $X_1, ..., X_n$ are mutually disjoint and

have union V(G). Moreover, let $1 \le i, j \le n$ with j > i+1, and let $u \in X_i$ and $v \in X_j$. Then there is a path P from v_0 to u of length i. If $v \in V(P)$ (this is only possible if $v = v_0$) then u is not adjacent to v since $i+1 \le j-1 < n$ and G has no directed circuit of length < n. If $v \notin V(P)$ then $v \ne v_0$, and hence there is no path from v_0 to v of length < j; and so again u is not adjacent to v. Thus, $D(X_i, X_j) = \emptyset$. Finally, we must show that X_1, \ldots, X_n are all non-empty. Certainly $X_n \ne \emptyset$ since $v_0 \in X_n$. Let $1 \le i < n$. Since G is strongly connected and $X_1 \ne \emptyset$ from the construction (since $|V(G)| \ge 2$), there exists $u \in X_1 \cup \ldots \cup X_i$ adjacent to some $v \in X_{i+1} \cup \ldots \cup X_n$. But $D(X_h, X_j) = \emptyset$ if $j \ge h+2$, and so $u \in X_i$; and consequently $X_i \ne \emptyset$, as required.

For $x \in [0,1]$, define y(x) as follows. If x=0, let y(x)=0. If x>0, let $i=\lceil nx \rceil$, so that $1 \le i \le n$, and let

$$y(x) = (|X_1| + \ldots + |X_{i-1}| + (nx - i + 1)|X_i|)|V(G)|^{-1}$$

Then y is a continuous function of x, and y(0)=0,y(1)=1. Let $I=\left\{0,\frac{1}{n},\frac{2}{n},\ldots,1\right\}$; then y is differentiable in [0,1]-I. Let $k=n^{-1}|V(G)|$. For $x\in[0,1]-I$, let $i=\lceil nx\rceil$; then $\frac{dy}{dx}=k^{-1}|X_i|$. By (1), $|X_i|\geq 1$, and so $\frac{dy}{dx}\geq k^{-1}$. By (2.3) there exists $h\in[0,1]-I$ such that when x=h,

$$k\frac{dy}{dx} \le \mu(k) - \mu(ky) - \mu(k(1-y)).$$

Let $i = \lceil nh \rceil$; then $1 \le i \le n$, and $k \frac{dy}{dx} = |X_i|$. Hence

$$|X_i| \le \mu(k) - \mu(ky) - \mu(k(1-y))$$

and

$$(|X_1| + \ldots + |X_{i-1}|)|V(G)|^{-1} \le y \le (|X_1| + \ldots + |X_i|)|V(G)|^{-1}.$$

Let $A = X_1 \cup \ldots \cup X_{i-1}, B = X_{i+1} \cup \ldots \cup X_n, C = X_i.$ Then

$$|A| \le y|V(G)| \le |V(G) - B|.$$

Consequently,

$$\mu(ky) = \mu\left(\frac{y|V(G)|}{n}\right) \geq \mu\left(\frac{|A|}{n}\right)$$

since μ is non-decreasing, and

$$\mu(k(1-y)) = \mu\left((1-y)\frac{|V(G)|}{n}\right) \ge \mu\left(\frac{|B|}{n}\right)$$

for the same reason. It follows that

$$|C| = |X_i| \le \mu(k) - \mu(ky) - \mu(k(1-y)) \le \mu\left(\frac{|V(G)|}{n}\right) - \mu\left(\frac{|A|}{n}\right) - \mu\left(\frac{|B|}{n}\right).$$

Finally, $D(A,B) = \emptyset$ from the construction, and $A,B \neq V(G)$ since $C = X_i \neq \emptyset$. The result follows.

If G is a graph or digraph, $G\backslash X$ denotes the graph or digraph obtained from G by deleting X.

Proof of (2.1). We proceed by induction on |V(G)|. Let $n = \lceil k^{-1} |V(G)| \rceil$; then every directed circuit of G has length $\geq n$. If G has no directed circuits then taking $X = \emptyset$ satisfies the theorem, since $\mu(k) \geq 0$ by condition (i) in the definition of "suitable". We assume, therefore, that G has a directed circuit, and consequently $|V(G)| \geq n \geq 1$. If n = 1 then $|V(G)| \leq k$, and taking X = V(G) satisfies the theorem, since $k \leq \mu(k)$ by condition (ii) in the definition of "suitable". We assume, therefore, that $n \geq 2$, and consequently $|V(G)| \geq 2$.

By (2.4), there is a partition (A, B, C) of V(G) with $A, B \neq V(G)$ and $D(A, B) = \emptyset$, such that

$$|C| \leq \mu\left(\frac{|V(G)|}{n}\right) - \mu\left(\frac{|A|}{n}\right) - \mu\left(\frac{|B|}{n}\right).$$

Let $G' = G \setminus (B \cup C)$ and $k' = \frac{|A|}{n}$. If k' > 0, then every directed circuit of G' has length $\geq n = k'^{-1}|V(G')|$, and since |A| < |V(G)| it follows from the inductive hypothesis that there exists $Y \subseteq A$ meeting every directed circuit of G', with

$$|Y| \le \mu(k') = \mu\left(\frac{|A|}{n}\right).$$

The same conclusion holds if k'=0, for then $A=\emptyset$ and we may take $Y=\emptyset$. Similarly, there exists $Z\subseteq B$ with $|Z|\leq \mu\left(\frac{|B|}{n}\right)$ meeting every directed circuit of $G\setminus (A\cup C)$. Since $D(A,B)=\emptyset$, it follows that $X=Y\cup Z\cup C$ meets every directed circuit of G, and

$$|X| \leq |C| + \mu\left(\frac{|A|}{n}\right) + \mu\left(\frac{|B|}{n}\right) \leq \mu\left(\frac{|V(G)|}{n}\right)$$

as required.

3. Remarks

It would be nice to obtain the best possible bound in (1.2), and to pin this down we need a construction of an appropriate digraph. The following construction was found in joint work with Noga Alon.

Let n be a large even integer, and let H be a graph with n vertices such that

- (i) every vertex of H has valency 6,
- (ii) every circuit of H has length $\geq \frac{4}{5} \log n$,
- (iii) for every partition A, B of V(H) into two sets of cardinality $\frac{1}{2}n$, there are at least $\frac{1}{4}n$ edges with one end in A and the other in B.

(Such graphs H exist; for instance by theorem (2.1) on page 120 of [1], applied to the graphs constructed in [2, 3].) Now H is Eulerian; direct the edges of H to obtain a digraph K in which every vertex has outvalency 3. Let G be the "directed line graph" of K; that is, G is a digraph with V(G) = E(K), and for $e, f \in V(G) = E(K)$, e is adjacent to f in G if the head of e in K equals the tail of f in K.

We see that |V(G)| = 3|V(H)| = 3n, and every directed circuit of G has length $\geq \frac{4}{5} \log n$. Consequently, every fractional circuit packing in G has value $\leq k$ where $k = 15n/(4\log n)$.

Let $X \subseteq V(G)$, meeting every directed circuit of G. Then $X \subseteq E(K)$, and X meets every directed circuit of K. Consequently, $K \setminus X$ has no directed circuits, and so we may order the vertices of K as v_1, \ldots, v_n so that for $1 \le i < j \le n$, v_i is not adjacent to v_j in $K \setminus X$. Let $A = \{v_1, \ldots, v_{\frac{1}{2}n}\}$, $B = \{v_{\frac{1}{2}n+1}, \ldots, v_n\}$. Then $D_K(A,B) \subseteq X$, and since

$$|D_K(B, A)| = |D_K(A, B)|$$

because K is an Eulerian digraph, it follows that there are at most 2|X| edges of H with one end in A and the other in B. By property (iii) above, $2|X| \ge \frac{1}{4}n$, and so

$$|X| \geq \frac{n}{8} \geq \frac{1}{30} k \log k$$

for n sufficiently large. This shows that the bound in (1.2) is best possible except for the $\log \log_2(4k)$ term and the multiplicative constant.

References

- [1] N. ALON, and J. H. SPENCER: The Probabilistic Method, Wiley, 1991.
- [2] A. LUBOTZKY, R. PHILLIPS, and P. SARNAK: Ramanujan graphs, Combinatorica 8 (1988), 261-277.
- [3] G. A. MARGULIS: Explicit group-theoretical constructions of combinatorial schemes and their application to the design of expanders and superconcentrators, Problemy Pederachi Informatsii 24 (1988), 51-60 (in Russian). English translation in Problems of Information Transmission 24 (1988), 39-46.
- [4] W. McCuaig: Intercyclic digraphs, Graph Structure Theory (Neil Robertson and Paul Seymour, eds.), AMS Contemporary Math., (147) 1991, 203-245.
- [5] D. H. YOUNGER: Graphs with interlinked directed circuits, Proceedings of the Midwest Symposium on Circuit Theory 2 (1973), XVI 2.1-XVI 2.7.

P. D. Seymour

Bellcore 445 South St. Morristown, New Jersey 07960, USA pds@bellcore.com